7,810 research outputs found

    Heavy-tailed statistics in short-message communication

    Get PDF
    Short-message (SM) is one of the most frequently used communication channels in the modern society. In this Brief Report, based on the SM communication records provided by some volunteers, we investigate the statistics of SM communication pattern, including the interevent time distributions between two consecutive short messages and two conversations, and the distribution of message number contained by a complete conversation. In the individual level, the current empirical data raises a strong evidence that the human activity pattern, exhibiting a heavy-tailed interevent time distribution, is driven by a non-Poisson nature.Comment: 4 pages, 4 figures and 1 tabl

    Phenomenology of a lepton triplet

    Full text link
    The most general phenomenological model involving a lepton triplet with hypercharge ±1\pm 1 is constructed. A distinctive feature of this model is the prediction of a doubly charged lepton, and a new heavy Dirac neutrino. We study the phenomenology of these exotic leptons in both low-energy experiments and at the LHC. The model predicts FCNC processes such as rare muon decays, which are studied in detail in order to constrain the model parameters. All the decay channels of the exotic leptons are described for a wide range of parameters. It is found that, if the mixing parameters between the exotic and light leptons are not too small (>10−6>10^{-6}), then they can be observable to a 3−5σ3-5\sigma statistical significance at the 7 TeV LHC with 10-50 fb−1^{-1} luminosity for a 400 GeV mass, and 14 TeV with 100-300 fb−1^{-1} luminosity for a 800 GeV mass.Comment: 28 pages, 17 figures. Version to appear in PR

    Origin of the Scaling Law in Human Mobility: Hierarchical Organization of Traffic Systems

    Full text link
    Uncovering the mechanism leading to the scaling law in human trajectories is of fundamental importance in understanding many spatiotemporal phenomena. We propose a hierarchical geographical model to mimic the real traffic system, upon which a random walker will generate a power-law travel displacement distribution with exponent -2. When considering the inhomogeneities of cities' locations and attractions, this model reproduces a power-law displacement distribution with an exponential cutoff, as well as a scaling behavior in the probability density of having traveled a certain distance at a certain time. Our results agree very well with the empirical observations reported in [D. Brockmann et al., Nature 439, 462 (2006)].Comment: 6 figures, 4 page

    Discovery limits for Techni-Omega production in eγe\gamma Collisions

    Full text link
    In a strongly-interacting electroweak sector with an isosinglet vector state, such as the techni-omega, ωT\omega_T, the direct ωTZγ \omega_T Z \gamma coupling implies that an ωT\omega_T can be produced by ZγZ \gamma fusion in eγe \gamma collisions. This is a unique feature for high energy e+e−e^+e^- or e−e−e^-e^- colliders operating in an eγe\gamma mode. We consider the processes e−γ→e−Zγe^- \gamma \to e^- Z\gamma and e−γ→e−W+W−Ze^- \gamma \to e^- W^+ W^- Z, both of which proceed via an intermediate ωT\omega_T. We find that at a 1.5 TeV e+e−e^+e^- linear collider operating in an eγe\gamma mode with an integrated luminosity of 200 fb−1^{-1}, we can discover an ωT\omega_T for a broad range of masses and widths.Comment: To appear in the Proceedings of the 29th International Conference on High Energy Physics, Vancouver, July 1998, 5 pages, Latex, 7 postscript figure

    Black hole evaporation with separated fermions

    Get PDF
    In models with a low quantum gravity scale, a well-motivated reason to expect quark and lepton fields are localized but physically separated is to avoid proton decay. This could happen in a ``fat-brane'' or in an additional, orthogonal 1/TeV sized dimension in which the gauge and Higgs fields live throughout. Black holes with masses of order the quantum gravity scale are therefore expected to evaporate non-universally, preferentially radiating directly into quarks or leptons but not both. Should black holes be copiously produced at a future hadron collider, we find the ratio of final state jets to charged leptons to photons is 113:8:1, which differs from previous analyses that assumed all standard model fields live at the same point in the extra dimensional space.Comment: 5 pages, REVTe

    Neutrino Masses and the LHC: Testing Type II Seesaw

    Full text link
    We demonstrate how to systematically test a well-motivated mechanism for neutrino mass generation (Type-II seesaw) at the LHC, in which a Higgs triplet is introduced. In the optimistic scenarios with a small Higgs triplet vacuum expectation value vd < 10^{-4} GeV, one can look for clean signals of lepton number violation in the decays of doubly charged and singly charged Higgs bosons to distinguish the Normal Hierarchy (NH), the Inverted Hierarchy (IH) and the Quasi-Degenerate (QD) spectrum for the light neutrino masses. The observation of either H+ --> tau+ nubar or H+ --> e+ nubar will be particularly robust for the spectrum test since they are independent of the unknown Majorana phases. The H++ decays moderately depend on a Majorana phase Phi2 in the NH, but sensitively depend on Phi1 in the IH. In a less favorable scenario vd > 2 10^{-4} GeV, when the leptonic channels are suppressed, one needs to observe the decays H+ --> W+ H_1 and H+ --> t bbar to confirm the triplet-doublet mixing which in turn implies the existence of the same gauge-invariant interaction between the lepton doublet and the Higgs triplet responsible for the neutrino mass generation. In the most optimistic situation, vd approx 10^{-4} GeV, both channels of the lepton pairs and gauge boson pairs may be available simultaneously. The determination of their relative branching fractions would give a measurement for the value of vd.Comment: 50 pages, 51 figures, minor corrections, one reference added, to appear in Physical Review

    Testability of Type I Seesaw at the CERN LHC: Revealing the Existence of the B-L Symmetry

    Full text link
    We study the possibility to test the Type I seesaw mechanism for neutrino masses at the CERN Large Hadron Collider. The inclusion of three generations of right-handed neutrinos (N_i) provides an attractive option of gauging the B-L accidental symmetry in the Standard Model (as well as an extended symmetry X=Y-5(B-L)/4). The production mechanisms for the right-handed neutrinos through the Z' gauge boson in the U(1)_{B-L} and U(1)_X extensions of the Standard Model are studied. We discuss the flavor combinations of the charged leptons from the decays of N_i in the Delta L=2 channels. We find that the clean channels with dilepton plus jets and possible secondary vertices of the N decay could provide conclusive signals at the LHC in connection with the hierarchical pattern of the light neutrino masses and mixing properties within the Type I seesaw mechanism.Comment: 40 pages, 27 figures, several modifications made and accepted for publication in Phys. Rev.

    Amplification and adaptation of centromeric repeats in polyploid switchgrass species.

    Get PDF
    Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats from a single satellite repeat family. Why centromeres are dominated by a single satellite repeat and how the satellite repeats originate and evolve are among the most intriguing and long-standing questions in centromere biology. We identified eight satellite repeats in the centromeres of tetraploid switchgrass (Panicum virgatum). Seven repeats showed characteristics associated with classical centromeric repeats with monomeric lengths ranging from 166 to 187 bp. Interestingly, these repeats share an 80-bp DNA motif. We demonstrate that this 80-bp motif may dictate translational and rotational phasing of the centromeric repeats with the cenH3 nucleosomes. The sequence of the last centromeric repeat, Pv156, is identical to the 5S ribosomal RNA genes. We demonstrate that a 5S ribosomal RNA gene array was recruited to be the functional centromere for one of the switchgrass chromosomes. Our findings reveal that certain types of satellite repeats, which are associated with unique sequence features and are composed of monomers in mono-nucleosomal length, are favorable for centromeres. Centromeric repeats may undergo dynamic amplification and adaptation before the centromeres in the same species become dominated by the best adapted satellite repeat

    Geometrical structure effect on localization length of carbon nanotubes

    Full text link
    The localization length and density of states of carbon nanotubes are evaluated within the tight-binding approximation. By comparison with the corresponding results for the square lattice tubes, it is found that the hexagonal structure affects strongly the behaviors of the density of states and localization lengths of carbon nanotubes.Comment: 7 pages, 4 figures, revised version to appear in Chin. Phys. Lett. The title is changed. Some arguments are adde
    • …
    corecore